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ABSTRACT 
This paper  addresses the issue of how to perform ar- 
chitectural analysis on an existing  product  line  archi- 
tecture.  The contribution of the  paper ie to identify 
and demonatrate a repeatable process for the analysis 
of an existing product line architecture.  The approach 
defines a “good” product line architecture in terms of 
those  quality attributes required by the particular  prod- 
uct linc under  development.  It  then  analyzes  the  archi- 
tecture against these  criteria by both manual and tool- 
supported methods.  The phaaed approach  described irl 
this paper provides  a  structured analysis of an existing 
product line architecture  using (1) formal specification 
of the high-level architecture, (2) manual analyYis of scc- 
narios to exercise t,he  a.rchitecture’8 BUPPOT~ for rcquirecl 
variabilities, and (3) model checking of critical behav- 
iors at  the  architectural level that are required for a11 
systems in the product line. Results of an application 
to a software product line of spaceborne  telescopes are 
used to explain and evalum  the approach. 
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1 INTRODUCTION 
A software product line is a collection of systems that 
share a. managed sel: of propertics that are  derived from 
a common  set of software assets [43. A product line 
approach to software development. is a.ttractive  to  most 
organizations due  to  the focus on reuse of both intellec- 
tual effort and existing  tangible  artifacts. The systems 
in a software  product  line usually share a common ar- 
chitecture. For a new product liue,  many alternative 
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architectures are  derived from requirements  and  one is 
selected m the “baseline” or [‘core’’ for futurc systems. 
For a product line that leverages existing  systems, an  ar- 
chitecture may already  be in p1a.c~. with organizational 
commitment to ita continued  use. 

This paper  addresses the issue of how to perform axchi- 
tectural analysis on an existing product line mchitec- 
turc. The contribution of t,hc paper is to identify and 
demonstrate a repenta(b1e process  for the analysis of an 
existing product line architecture.  Throughout  the  p+ 
perr application to a software  product line of spaceborne 
telescopcs is  used to explain  and  evaluate the  approach. 
The  approach defirles a “good” product line  architec- 
ture in terms of those  quality  attributes required by the 
particular product line under  development- It then a.11- 
alyzev the  architecture against  these  criteria by both 
manual and tool-supportcd  methods. 

This paper  demonstrates  the  analytical value of speci- 
fying an existing architecture with an Architectural De- 
scription  Language (ADL), both in terms of identifying 
architectural mixmatches  with the  product line and in 
terms of providing a hascline for subsequent  automated 
analysets. Once an ADL model existl,  the  architecture 
can  be exercised manually by measuring  the effect on 
the  ;mhitccture of each of a set, of scenarios selected to 
ca,pture the required attributes (e.g., modifiability,  fault 
tolerance). We found  that thiv technique was particu- 
larly effective at verifying whcther or not the archjtec- 
ture supported planncd variabilities  within the  product 
line. 

hrtber verification of the  architecture involves auto- 
mated  tool  support to analyze key, common behaviors. 
We were particularly  interested in the adequacy of the 
fault-tolerant  behavior of a critical data interface com- 
mon to all systems.  Model checking of the targeted 
behaviors allows demonstration of the consequences of 
some architectural dccisions for the  product line. 

The phaqed approach  described in this  paper provides a 
structured analysis of an exiating product line architec- 
ture  using (1) architectural recovery and specification, 
(2) manual analysis of scenarios to exercise the  srdlitec- 
ture’s  support for required  variabilities, and (3) model 
checking of critical  behaviors at the  architectural level 
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that are required for all systems in thc product line. 

The rest of the  paper is organized as follows. Section 2 
provides background  relating  to  software  a,rcllitecture, 
product  lines,  and the interferometer  application. Scc- 
tion 3 describes the three-step  approach outlincd above 
in greater  detail.  Section 4 presents and discuvsas the 
reaults from the  manual  and tool-supported  analyses. 
Section 5 briefly describes  related work. Section 6 of- 
fers concluding renlarka and indicates some directions 
f w  future  research. 

2 BACKGROUND 
This  section  describes  background  material in the arean 
of software architectures,  software  product Iines, a,nd 
interferometry. 

2.1 Software Architectures 
A software architecture describes the  overdl organiza- 
tion of a software system in terms of its constituent ele- 
ments, including coxuput&tional  units  and  their  intcrre- 
lationships [15]. In general? an  architecture is specified 
as a  configuration of components and connectors. A 
component is an  encapsulation of a  computational  unit 
that has an in te rke   tha t  specifies the capabilities that 
the component can  provide and the ways that a com- 
ponent delivers its capabilities. The interface of a ~0111- 

ponent is specified by the  the type of the component, 
by one or more ports supported by the componcnt, and 
by the constmints imposed 011 the  ports of t,he com- 
ponent, where component types  are intended to cap- 
ture architectural  properties. Ports are  the interact,ion 
points throclgh which a  component exchanges rcsourccs 
with ita environment. Port specifications specify the yig- 
natures,  and  optionally, the behaviors of the resource. 
Logic-based formal  specifications may be attsched  to a, 
port  to precisely capture behavioral  properties. Formal 
specifications of this sort  enable a semantic-based  ap- 
proach to analyzing achi tecturd behavior. 

Connectors  encapsulate the ways that componeuts in- 
teract. A connector is specified by the type of the con- 
nector,  the mles defined by the connector type,  and  the 
constraints imposed 0x1 the roles of the connector. A 
connector defines B set of roles for the participants of 
the interaction specified by the connector. Connector 
types  are intended to  capturc recurring  component in- 
teraction  styles. 

Components are connected by configuring their  ports 
to  the roles of connect,ors. Each role has a domain that 
defines a set of port  types and only the ports whose 
types are in the domain  can be configured to  the role. 

Another  important  concept in the area of aoftware ar- 
chitectures ia the concept of an architecmml style. An 
architectural  style defines patterns  and semantic cnn- 
straints on a configuralio~~ of components and connec- 
tors. As such, a  style  can define a set or family of sys- 
tems that share common architectural  semantic$ [13]. 

For inatancc, a pipe and filter style  refers to a pipelincd 
set of components  whereas  a layered style refers to  a 
set ol cornponents that communicate  via hierarchies of 
interfaces. The distinction between architectural  stylc 
and architectllre is an  important concept throughout 
Lhe work described here. As one would expcct,  all the 
systems  in our example  product line shate a basc ar- 
chitectural  style  and a set of shared  software compo- 
nents that  are organized and communicate  in  certain 
prescribed  manners. However, there are architectural 
variations  among the systems regarding the number of 
components and connectors,  with some systems repli- 
cating  portions of the baseline reference architecture  in 
their  individual  architectures. 

2.2 Product Lines 
Bass, Clemerlts, and Kazman define a softzuan product 
line as “x collcction of systems  sharing a managed set of 
features  constructed  from a, common set of core software 
assets” [4]. These  aasets  typically inchdc a base archi- 
tecture  and a, set of shared  software  components. The 
software architecture for the  product line displays the 
commonality that  the systems share  and provides the 
mcchanisms for variability  among the  products.  The 
systems in the product  line  are referred to as members 
or deriuntaves of the baseline  architecture or architec- 
turd style. 

2.3 Interferometers  
The product line of interest in thia work is a  set of in- 
terferometer  projects under development by NASA’s Jet 
Propulsion  Laboratory. An interferometer,  in  this con- 
text, is a collection of telescopes that act. together aa a 
single, very powcrful instrument.  Interferometers will 
be used to explore the origins of stars and galaxies and 
t n  search for Earth-like planets  around  distant  stars. 
An interferometer combines the starlight it collects from 
telescopes in such a way that  the light “interferes” or in- 
teracss to incrcssc the  intensity of the observation. This 
allnws precise nleasurernents to he macle. 

Among the NASA interferometers  either proposed or 
under development for launch  in the next twenty years 
are the Space  Interferometry Mission (SIM), the New 
Millenium Program’s  Space Technology-3 (ST-3), and 
the Terrestrial  Planet Finder (TRF), well BS the 
ground-based Keck Interferometry  Project and the 
Mount  Palornar  Interferometer [8, 141. ST-3 and TPF 
use telescopes that fly in formation  on  separated space- 
craft, but work together as a single instrument, while 
the other  projects involve multiple teleeeopes working 
together  on one or more fixed axes. 

Among the components  shared by the interferometer 
systems  and discussed in this  paper are the Delay Line, 
thc Fringe Ikacker,  and  the  Internal Metrology. The 
Dalay Line software compensates for the difference in 
time between when starlight  arrives at  the separate mir- 
rors. The Fkinge Tracker  software provides constant 
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feedback to the Delay Line regarding needed adjust- 
ments t o  maintain ped< intensity of the fringe (patterns 
of light and dark bands produced by interference of the 
light).  The  Internal Metrology  software provides input 
to  the Delay Line regarding  small changes in  distances 
among parts of the intcrferorneter that must  be included 
in its  calculations. 

In previous work, we analyzed  commonalities  and vari- 
abilities of the JPL interferometry  software project, [12]. 
The software in these interferometers  has a high dcgree 
of commonality  with  a  managed set of sharcd  features 
built from core software  components [3]. A  group of 
developers with a  strong  background in interferometer 
software is in place at JPL to develop and provide to  the 
interferometer  projects  a set of reusable, generic soft- 
ware components. 

S APPROACH 
In this section we describe the approach that was  uscd 
to  analyze an interferometer  software  product line. Sec- 
tion 3.1 summariaea the overall process used during the 
project and introduces the architectural recovery, dis- 
covery, and specification of the existing  product line; 
Section 3.2 describes the manua;l analysis process used 
to measure quality attributes  related to product lines; 
and Section 3.3 describes the behavioral malysis per- 
formed using automated tool support,. 

3.1 Pro cess 
A software axchitecture is One key required element that 
should be presellt in order to  analyze wftware for prod- 
uct line “fitness” .since it is the architecture, above amy 
other  artifact, that is being  reused. One of the prop- 
erties of t,his particular  product  line is that although 
an architecturally-based  product  line  approach way not 
used in the construction of the software, the artifacts 
(both conceptual and physical) were being used in a 
manner indicative of a product  line  approach. As such, 
several software products  had been developed or were 
in the process of being developed based or1 the corc ar- 
chitect,ure. 

For the interferometer  software, we performed the fol- 
lowing architecture-centered  steps: 

1. Architecture recovery, discovery, and specification 

2. Manual architectural analysis 

3. Tool assisted architectural  analysis 

The first st8ep, architecture recovery, discovery, and 
specification, WBB used in order to facilitate two goals: 
1) to familiariae the  analysts  with  the problem  domain 
and implemented solution, and 2) to  support constr~rc- 
tion of a software architectural  representation that W ~ E I  

consistent with current  standards and vocabulary. For 
this step,  documentation, source  code, and developer 

communication was used to  usist in the construction of 
a reasonable specification of thc software  aschitecturc. 
The result,ing specifications formed the basis for dl sub- 
sequent analy~es, manual and automated. 

The sofhware architecture recovered in the first  step 
formed the baseline or core  architecture for tho  inter- 
ferometer  product line. The assumption in this  step 
(later confirmed by the analysis  described below) w a  
that, a,lthough changes in software code are  frequent, 
significant modifications to  the software  architecture  are 
infrequent. As such, a reasonable, initid view of the 
software  architecture can be  derived  from  existing d e  
sign docunlerlts and later modified as new information 
is recovered. 

To aid in the validation of the models  constructed in the 
first step, we consulted  with the project engineers to de- 
termine the accuracy of the architecture BS documented 
in comparison  with how the project engineers viewed 
thc architecture.  This  information was instrumental in 
constructing a more accurate view of the interferometer 
architecture. 

To further  validate the  accuracy of the core architecture 
and its scalability to  the existing and planned prod- 
ucts in thc product line, we then compared the core to  
the individual  product line derivatives. To facilitate the 
comparison, we used Table 1 as a medium for commu- 
llication  with several developers. In the table, each row 
rcpresents a different component that could be poten- 
tially  present in an interferometer  system. The columns 
represent thc different derivatives that are currelltly ei- 
thcr being developed or are planned for deployment over 
thc next several years. This table served ae B simple 
way to represent  features of thc architecture that are 
common in  behavior to  each  potential  derivative,  but 
can  potentially u5ty in multiplicity  bmed on the num- 
ber of potential  starlight collectors or “arms”. For each 
derivative, we consulted with developers to verify that 
the number of components  listed irl the table was con- 
sistent  with  individual mission nlans. 

Table 1: Comparison Matrix 

The next phase of the approach was to  perform a num- 
ber of analyses in order to  help determine  whether  the 
architecture was amenable to  a product line develop- 
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Figure 1: Interferometer Software Architecture 

rnent approach. The primary goal was to determine 
if certain, desirable quality  attributes present in most 
product line architectures were also present  in the inter- 
ferometer  architecture. In addition, wc were interested 
in performing behavioral analysis in order to study how 
behavioral interactions in the core architecture might 
potentially impact deriv a ,t’ wea. 

The remainder of this section is divided into Munual 
Architectural Analysis and Analysis IJsang Automated 
Suppod Tools. One of the interesting  aspects of this 
bifurcation of the analysis along manual  and aut,ornated 
andysis lines is that  the quality  attributes  that fall into 
the class of variabilities seem to he  supported only by 
manual analysis techniques whereas the cornrnonmlitieu 
seem to be supported in some manner by automated 
tools. As the work described  here is only a single point 
of data, we do not  attempt  to explain the ohscrvatiorl, 
although we do find it interesting and recognize the ueed 
for further  investigation along these lines. 

3.2 Manual Architectural Analysis 
Base, Clements, and Kazman divide quality  attributes 
into  those that can be discerned by observing the aystem 
at runtime  and  those that  cannot [4]. Of the ones that 
cannot be observed at runtime, modifiability is the key 
property required by the interferometer product line. 
Modifiability, according to Baas et  al., “may be  the qual- 
ity attribute most. closely aligned to the  architecturc of 
a aystem,” and, as such, is a good way to evaluate the 
architecture. B a s  et ai., identify four categories of rnod- 
ifiability: Extensibility or changiag  capabilities, Delet- 
ing capabilities,  Portability (adapting  to new operating 

environments), and Restructuring. 

To evaluate the modifiability of the interferometry prod- 
net. line architecture, we found  examples of each of the 
four categories of modifiability in the requirements spec- 
ification of a syalern currently  being developed in the 
product line . We t h n  manually  analyzed the effect of 
each change on the specified architecture. This inter- 
ferometer  system was chosen hecause its requirements 
were well documented and its rcquirernents  presented a 
good challenge to  the modifiability of the baseline ar- 
chitecture. 

The a,pproach used is very Birxlilar to SAAM [9], a 
scenario-baaed method for analyzing  architectures. A 
scenario is a description of m expected use of a gpe- 

cific product line. SAAM alao tests modifiability, e.g., 
by proposing specific chmgcs  to  be made to the sys- 
tem. The advantage of the  scenario-based  approach is 
that it movea the discussion from a rather amorphous, 
high-level of generality (%nodifia.bility”) to a  concrete, 
context-bmed level of detail  particular to the  product 
linc (“adds pathlength feedforward capability”). 

Thc interferometer  product line has significant require- 
ments  that, fall under  each of the four categories of mod- 
ifiability. 

0 Potential  extensibility  variations include new al- 
gorithms (e.g., a different fringesearch algorithm) 
and  added  features (c.g., pathlength feedforward, 
internal  metrology), 

. Dclctions involve changer  required to  support  the 
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’ Modifiability Efiect on Emample Scemrrio Scenrrrao n p e  
Attribute 

No change  required Algorithm for fringe swrch Change algorithm Extensibility 
Architecture 

I changed 
Excensibility 1 Add feature I Pathlength feedforward I No style change; 

1 capability I additional connectors 
Extemibility I Add feature I hternel metrology added I No style change; 

I 
- 

additional components 
and connectors 

Deletion 

ratexface intact; component Starlight detector Chmge sensor Portability 
t o  remote device 

Connector unchanged Shift handheld paddle Change HCI device Portabilisy 
than actual 

No change  rcquired Use pseudnytu rather Delete input 

I hardware chttnged I implementation changes 
Portability I Add input units ] More starlight collectors I No style chance; - 

“duplicate” existing pieces; 
see diecussion 

Portability 

Might change style and Proposed switch to CORBA Optimize for rcuse Restructuring 

No style change; Distribute targeting Add proceasors 
computation change within components 

I I I I connectors 
~~ - 

Table 2: Analyzing the Architccture‘s Modifiability via Scenarios 

incremental  capabiIities of tho various tetrthads 
and prototypes. For example, one testbed uses 
pseudostar  (simulated)  input rather  than  actual 
starlight,  whereas  the science interferometers will 
use direct starlight aa input,. 

0 Portability changes are widespread, since differ- 
ent  interferometers in the product line will. have 
different nurnberfl of starlight collectors, mirrors, 
tolescopes, etc. In addition, different systems will 
use different starlight  detector  hasdware  and dif- 
ferent operator interfa.ces (e.g., a handheld  paddle 
for the teatbeds,  remote  commandability for the 
flight units). The interferometer  software will run 
on multiple processors, with the numbcr of proces- 
sors a variability among the systems. 

Restructuring changes that  are  not included in the 
other  categories am limited. A proposed change to 
optimize for reuse is the only scenario used in the 
architectural  evaluation. 

As shown in Table 2, nine  representative  changes were 
selected to evaluate the modifiability of the  architectlre: 
three extengibility changes, one deletion,  four  portabil- 
ity chmges, and one  restructuring. All these changes 
are variabilitiea in the  product line specification, Le., 
not common to all the interferQrnaters. The approilch 
was to use these  rcprcsentative scenarios to exercise and 
evaluate the baseline architecture. A discussion of the 
results of the application to tho baseline interferomcter 

architecture  and, more generally, of the advantages and 
disadvantages of this  approach can be found  in Section 
4. 

3.3 Analysis using Automated Support Tools 
One of the goals of this  project was to determine the 
extent to which automated support took could be used 
to aid in the analysis of a product-line software archi- 
tecturc. Specifically, it was our intent to identify tools 
that could be adopted  with  little overhead, while still 
satisfying the objective of formally analyzing the archi- 
tectural  behavior.  This  meant that  the selected tools 
should have a reasonable level of support and documen- 
tation. 

Analysis Steps 
Thc following tasks were identified as the critical path 
for achieving our automated analysis objectives: (I) Ar- 
chitccture specification in an ADL, (2) Formal specifi- 
cation of behavior, and (3) Analysis of behavior. The 
approach used in the selection of notations and tools is 
described here. The result9 of the tool-supported anal- 
ysis w e  described and discussed in Section 4. 

ACME [5] ADL and ACMEStudio [I] were choeen for 
the specification of the architecture. ACME is an ar- 
chitecture  description  language that has been used for 
high-level architectural specifications [5]- ACME con- 
tains  constructs for  embedding specifications written 
in J wide variety of exiatiug ADLs, making it extensi- 
ble I;o both existing and  future specification languages. 
ACME is supported by ttn a,rchitectural specification 
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tool,  ACMEStudio, that  supports graphical  construc- 
tion  and  manipulation of software  architccturee. Anal- 
ysis of the design documents yielded the softwarF archi- 
tecture  depicted in Figure 1. 

In addition to recovering and specifying the high-level 
view of the interferorncter  architecture,  behaviors of 
component  interactions were derivad from existing de- 
sign documentation. Specifically, we used information 
fouud in design documents  to help  construct a forrnal 
Ypecification of component  interactions  in  the intarfer- 
ometer software. The Wright ADL was uveri for the 
€orma1 specification of behavior. Wright [2] is an ADL 
baed  on the CSP specification  languagc [6]. The pri- 
mary focus of the Wright ADL is to facilitate the speci- 
fication of connector, role, and port semantics. In xddi- 
tion to being based on the well-established CSP ssman- 
tics, existing  Wright tools support the ACME ADL, so 
provided a clean  interface  with the existing specifica- 
tion. 

The final atep involved using t.he formal specifications 
to analyze behavior of various aspecttl of certa.in inter- 
actions between components in the architecture. To in- 
crease confidence in the validity of the formal  analysis, 
source code was informally reverse engineered to deter- 
mine whet.her properties observed in the formal speci- 
fication were precrent in the implementation. The Spin 
Model Checker was used to  further analyze behaviors 
of interest.  Spin [7] is a symbolic model checker that 
has been used for verifying the behavior of a wide va- 
riety of hardware and software  applications.  Promela,, 
the input specification language for Spin, is based  on 
Dijkstra’s gumled command  language HA well a8 CSP. 

The primary  reason for choosing each of the notatione 
and tools listed  above wa.s a  pragmatic one. The no- 
tations are related  eithsr via direct  tool  interchange 
support (ae is the ca,se between ACME and Wright) or 
by some Yemantic foundation (cg , ,  CSP foundation lor 
Wright and  Promela,). As such, the ACME ftarrleworlc 
(including Wright specification*) could be used for spec- 
ifying the interferometer  architecture, and verification 
using Spin could follow naturally  with a small amount 
of translation of the embedded Wright into Promela. 

4 RESULTS 
4.1 Architecture Specification 
As shown in Figure 2, the original  documentation for 
the interferometry  software  depicts the  architecture us- 
ing a layered style. However, during the analysis a r~d  
subsequent epecification of the architecture, it was dis- 
covered that the architecture, as documented,  exhibited 
“layer bridging” properties whereby non-adjacent  layers 
in the  architecture communicated, thus “bridging” or by 
passing intermediate  layers. In addition, sibling compo- 
nents located in a layer were found to  cornmunicatc, 
contrary to the la,yere.d style. Consequently, thc high- 
level interferometer  architecture was re-specified in a 

style that was consistent  with the services a.nd behaviors 
described in lower-level documentation. The resu lhg  
architecture, shown iu Figure 1, more  accurately spec- 
ified the architecture  as a heterogeneous  architecture 
with a collection of comm~rsicsting processes as well its 
a constrained pipe and filter interaction between the 
Instrument CDS and all of the other  remaining compo- 

I Configurndon I 
~ __ __ 

Figure 2: Original. Core  Architecture 

4.2 Manual Analysis Results 
The baseline  architecture shows the commonality that 
exists among the members of the product line. Each 
member of the  product line uses this  architecture or an 
a,daptatioII of it.  Thus,  nothing in the architecture can 
constrain the anticipated  vwiabilitiea  among the mem- 
bers. 

For the interferometer  product line, a key aspect of the 
“goodness” of t.he baseline architctture wm how mod- 
ifiable it was. It was with the goal of exercising the 
product linc architecture that we considered the effect 
on  the  architecture of each of nine  repreaentative mod- 
ifiability scemrioa,  drawn from the documentation. 

Effect on architecture of scenrs~iou 
Table ‘2 summasizes the  results of our manad <maly- 
eis of thc product  line  architecture  lor modifiability via, 
the nine scenarios dcscribecl in Section 3.2. Column 1 
list8 to which of the four categories of modifiability each 
scenario belongs (Extensibility,  Deletion,  Portability, or 
Restructuring). Column 2 is a high-level description of 
the scenario  (e.g., “Change algorithm”, “Add feature”, 
“Change sensor”,  etc.).  Column 3 briefly describes the 
particular scenario. Column 4 indicates the effect of 
that modifiability scenario on the baseline architecture. 

Of the nine  scenarios,  four involved no change to the 
baseline aschitectura.  These acenrtrios wcre: change of 
algorithm, deletion of input, dlange of human-computer 
interface device, and change of senaor device. Two 
other sccnarios, related to  cxtenaibility, require addi- 
tional  connectors and, in  one case, an additional comprz 
ncnt  not in the original architecture. However, these ex- 
tensions are relatively straight-forwad  and their scope 
is easy to anticipate. 
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The  other  three scenarios  require significant changes to  
t,he product  linc  architecture,  but  the changes art: not 
visible at  the level of the specified architecture. In one 
case (add  input units), implementation of the scenwio 
can involve adding  “arms” (Le., additional axes) to the 
interferometer. This has no effect on the more cletailed 
core architecture (which represents a single axis), but 
requires  duplication/replication of connectors and com- 
ponents OIL the baseline  architecture, a significant archi- 
tectural conscqueIlce. The scenario that distributes the 
targeting  computation over more processors can be ac- 
comodated  without  change to  the baeeline architecture. 
At the level of the model?  there was no commitment 
to  implementation  details such as number of proces- 
sor3. The sole restructuring  scenario, a possible switch 
to CORBA, might  change both  the style  and the imple- 
mentation of t,hc connectors, and would require  further 
investigation. 

Discussion 
Locality of change. Most, modifiability scenario3 
demonstrated good locality of change for the specified 
architecture  (i,e., involved changee that could be readily 
scoped). The existeIlce of an architectural specification 
assisted in this effort. Most scenarios do not affect the 
services required of other  components. 

Units of reuse. The units of reuse  in the  architecture 
tended to be  small. For example, a Delay Line is a 
unit,  but a Delay Line-Fringe Tracker-Star Tracker is 
not. All Delay Lines have a, high degree of common- 
ality, and the interfaces between a single Delay Line 
and a single Fringe  Tracker me similar for all mern- 
bers (the  “portability  layer”),  but  the number of Delay 
Linc-finge Traclcer interfaces varies greatly among the 
product line members. The architectural .style wits not 
changed by the scenarios, but  the number of connec- 
tions and,  to a lesser degree,  components, was chaaged, 
There  are many cliflerent. cross-strappings possible and 
a large amount of reconfiguration involved in meeting 
the real-time  constraints on the various missions. Hav- 
ing small units of reuse may complicate verification and 
integration of indivirhml members (e.g., with  regard to 
contention,  race  conditions, starvation, etc.). 

Role of redundancy, Severd of the scenarios involved 
adding  multiple,  identical  components  or  connectors. 
However, these copiev arc not  redundant, in the sense of 
adding  robustness,  since they arc dl needed to achieve 
the required  performance. For example, if starlight 
collectors are  added,  it is t o  increase the amount of 
starlight that the interferometer  can process in order 
to meet  requirements for detecting  dim  targets. Like- 
wise, if processors are  added, it is to meet  requirements 
for increasing the resolution  capability of an interfer- 
ometer. In this  architecture,  redundancy does not  add 
robustness for the most part;  there  are not spare unit3 
or alternate data paths. 

Performance. One of the unusual  aspects of this  ap- 
plic:a,tion  is that the range m d  scope of the variabilities 
tend to be non-negotiable. This is due to  the very tight 
performance and accuracy  requirements on the interfer- 
ometry missions. For example, an upcoming  interferom- 
eter, the Space  Interferometry Mission (SIM), requires 
precision at  the level of picometer metrology and mi- 
crosrcsecond mtrometry. To achieve this level of preci- 
sion, significant real-time  constraints  cxist  with limited 
flexibility to acenrnodate reuse concerns. Performance 
requirements on each mission also drive the choice of 
hardware, algorithmu, and added  capabilities. The con- 
sequence for reuse is that in tradeofis of modifiability 
vs. performance,  performance wins. 

Architectural style. Dcspite the range of variations 
that a,ffect the architecture (e.g., varying the number of 
ports on a component, varying the number of instances 
of a  component), the interferometry project ie commit- 
ted to keeping the architectural  style  stable. Most im- 
portantly,  this  dcmonstratea itself in  their  maintaining 
thc commonality of the interfaces. The number of in- 
terfaces is not  constant among product. line members, 
but the interfaces  themselves are relatively  stable. Rec- 
ognizing the long tirneline over which the product line 
will extend (proposed la~~nches  from 2003 to 2020) and 
the primacy of performance  [with continuow  improve 
ment of hardware  and  algorithms),  the project has done 
a, goad joh of designing for evolwbility. 

Repeatable process. The  manual analysis of the archi- 
tecture is L repeatable  process  that can be applied to  
product. lines. The process is m f~llows: 

1. 

2. 

3. 

4. 

4.3 

Identify  anticipated changes from available docu- 
mentation and project infonnation.  These antici- 
pated changes form product line variabilities that 
the baseline architecture  must  accomodate. 

Categorim  the allticipatcd changes into rnodifia- 
bility categories [extcnsibility,  deletion,  portability, 
rcstructuring). 

Select and develop scenarios for each category. The 
choice of scenarios is made to broadly challenge the 
goodnew of the architect,urc with regard to  the four 
modifiability categories. 

Evaluate the effect of each modifiability scenario on 
the baseline architecture. This gives a measure of 
the goodness of the architecture  with  respect to  the 
anticipated variabilities for this  product line. 

Analysis Using Automated Support Tools 
While the manual au&sis addressed issues related di- 
rectly to  the use of the interferometer  architecture as 
a product  line,  the  automated analysis vas primarily 
of use for analyzing behavior viewed as common across 
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product line members. As such, any behavioral proper- 
ties  (both positive and negative) discovered at the archi- 
tectural level were likely to be common to 311. mcmbers 
of the product line. 

Spin vcY"ijiC6tiOn 
A key element of the interferometer  architecture was 
the use of the "Target Buffer" connector.  This connec- 
tQr,  both  in  the design and  in  the  implementation, is a 
non-locking buffer used to communicate star targets  to 
the Delay Line component by several other components. 
The Target Buffer connector was viewed a8 a possible 
concern, especially in light of the non-locking feature. It 
was determined that behavior involving this  connector 
should be formally specified in order to  study itas impact 
on the system. 

There are several components that  are either directly 
or  indirectly  impacted by the non-locking natura of the 
Target Buffer connector:  Target  Sources, a Command 
Controller, and a Target  Generator  component. The 
Target  Generator uses the values written to  the Target 
Buffer by various Target Sources to  compute a ta.rget 
position for the interferometer. The Command Con- 
troller provides control for the computation by enabling 
or disabling the Target Sources. Target  Sources  write a 
timestamped value to  the Target Buffer, with the times- 
tamp determining a time that  the  target value becomes 
valid. 

The Target  Generator uses the following Four-step se- 
quence for calculating the  target position: 

1. Promote waiting targets  to  active  status if the cur- 
rent  time is greater  than  or  equal to  the timestamp 

2. R.ead  new targets from enabled target sources 

3. Fend (assign to wait statu3 or activate new targets 
based on timestamps) 

4. Compute  the  total  target 

The Wright specification of the interaction between the 
Target  Generator  and the potential sources of data that, 
are written  to  the Target Buffer is shown in Figure 3, 
The Source specification models the fact that a source 
internally decides whether  or not to write a new value to 
t,he Target Buffer. Finally, the Target  Generator speci- 
fication models the  target-position algorithm described 
above. 

From the Wright specification, we constructed the 
Pro~r~ela  specification found in Figures 4 and 5 with the 
intention of determining  whether or not the following 
situations could occur. 

Ssyle  TargetCempufation 
Connector TargcrBuffer 

Role Writer = u r i t e t a q e t ! x  -> Writdr 1 - 1  T i ck  
Role Roador = seedtargstlx -> Reader 1 - 1  Tick 
Glue = Uritor.writetkmget!x -> Glue c1 

Reader.raadtarget!r ->  Glue [I Tick 
Component Sourca 

Port CDSComad = enable ->  CDSCommand 1 ' 1  

Port DLTarget write !x  ->  DLT4zg.t I - 1 Tick 
Cmpuration = (CDSComraaad.enabla ->  Generate) CJ 

whara € 

disable -> CDSConarand 1'1 Tick 

[CDSCommand.diaablo -> Computatiah) n Tick  

Ganorate = DLTargat.write!y -> Goharate [I 

1 
Generate (1 Tick 

Component TargetGenerater 
PorE Input = readtargeclx ->  TargetBUffcr 1 - 1  Tick 
Computation = ( _ ~ Y O U O C ~  ->  

Input.read,tnrget?n -? 
-pend-or-acti*ate -> 
,compute -> Compura%ion c] Tick ) 

end Sty le  

CD~figuzarion TargeeCPmputationInatanC. 
Inetahcos 

t b l  : TargetBuffer 
s r c l  : Source 
d l  : TargatGanaator 

srcl.DLTargat as rbl.UriCst 
d l .  Input as tbl .Reader 

Artachmenta 

End Configurntioh 

Figure 3: Subset of the Wright Specification 

Data &om Disabled Sourcee. IS there a poten- 
tial for calculating the  targct position by using 
data from sources that are currently  disabled? 
Beat Data from Enabled Sources. IS there a 
potential to calculate a target, position by uQing 
data that is less current  than data currently  in 
the  target buffer? 

In the first case, we were intercsted  in  determining 
whether or not it was possible to  generate a target po- 
sition by using data from inactive sources. In eesence, a 
target position input can be read by the Target Gener- 
ator, pended  due to  the timestamp (e.g., the timestamp 
indicates that  the  target value is not to be used until 
some time in the future), and subsequently  promoted 
into use when the  timestamp  matches (or precedes) the 
current  time.  The  potential inconsistency occurs during 
the time that the target is pended and is caused by the 
fact that a soutce  can be disabled during  this waiting 
period. 

The second case involves the following situation. As bc- 
fore, J, target from a source is read,  potentially pended, 
and  eventually  promoted. Because of the sequencing of 
events, a new target value from the souce can over- 
write the recently  promoted target, and based on the 
timestamp  be valid for immedia.te use. 
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psoctype eoqrco-1 (chan cdo) 
I 

chm cmd; 
c b m  t s  = C13 09 i i n t  1; 
ehan mrg = 111 o f  i in= 1; 
int accive-or-inactive; 

cda?cmd; 

cmd?activc-or-inactivs; 

(rnsga-gsnazated C max-nsga) %It 
(acrive-or-inactive t r u n )  -> 
i f  
: : run moe~age(meg> ; 

rneg?a,tbl; 
run timostamp(ts1; 

msge-gonorated = msgs-gonerated + 1; 
tE?Ei_ap; 

: :  skip; 
f i ;  
(done != true) -> cmd?attivw-or_inactiva; 
(done == true) -> break: 

Figure 4: Promela Specification of Target Source 

Using the Spin model checker, it was verified that 
these  situations  do in fact, exist. In order to  determine 
whether  these cases were also prcsent in the code, we 
exa,mined source files and werc able to verify that  the 
situations,  as  documented  and aa specified with  Wright, 
did in fact  exist  in an early, pra-flight version of the 
source code. 

In each of these cases, the use of a non-locking buffer 
coupled with the  target-generator  algorithm provided 
the  potential for intermittent values that WE: incousiu- 
tent with the desired and current  target.  The interfer- 
ometry  project engineers confirmed that  the Spin model 
checker accurately modeled the software behavior in 
both anomalous  situations. In the first case, a target 
from a currently  disabled  target  source  may  still  be ac- 
tivated. In the second case, a newly received target with 
a leas-current timestamp  can  overwrite an active target. 
However, in  neither ca,se is the software  behavior con- 
trary to intent, given the underlying  assumptions about 
the  operational use of the software. 

Discussion 
The  automated analysis of the interferometer architec- 
ture using the Spin model checker was grea,tly  facilitated 
by the availability and use of the Wright and ACME 
ADLa. In effect, by using this combination of tools, v e  
were able to use model checking in a manner that was di- 
rected by the structure  and behavior of a softvare archi- 
tecture. That is, the software architecture specification 
was used to direct the model checking activity by fa- 
cilitating identification of potentially  inleresting pointa 
of interaction in the interferometer  architecture. Given 
the fact that any bchavior observed iu the  architecture is 

procaype delay-line (chan v a l i d )  
I 

i n t  E U ~ ;  

i n t   v ;  
do 
; :  (mege-penorated C maY,mzgs) -> 

/* "activqticn/promo~ioh" of 
pendad c u g e t e  achieved 
by maintaining preriaus 
value of s l  or  a2 w /  

/ C  read nev targets f r o m  active target BoUrcea +/ 

(v == 0 )  -> ¶kip: 
(v = 1) -> 
a 1  = c - tb l ;  
o-rbl = clsar; 
(v == 2) -> 
L Z  = 0-tb2; 
o-tb2 = c h a r ;  
(v == 3) -> 
51 = o - t b l ;  
02 = 0-tb2;  
o-tbi  = c l e a r ;  
0-tb2 = c l a m ;  

Figure 5; Promela Specification of Delay Line 

potentially  replicated among all product line members, 
we found that tha  approach was a good complement to 
the manual anaIysis activities. 

5 RELATED WORK 
AS described in Section 3.2, the Software Architecture 
Analysis Method (SAAM) is a scenari-based method 
for architectural  assessment. A related  architectural 
analysis  method is the Architecture Tradeoff Analysis 
Method (ATAM) [lo]. This iterative  method is based 
on identifying  a set of quality  attributes and associated 
analysis  techniques tha,t  ~newure an architecturc along 
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the dimensions of the  attributes. Sensitive points in 
an  architecture ass determined by assessing the degree 
to which an attribute analysis varies with variations in 
the  architecture.  In  our  approach, we focus on qual- 
it,y attributes  that are specific to  product line architec- 
tures. As such, the approach  can be applied in &her 
the SAAM or the ATAM context. 

Rapide [ll] is a suite of techniques and tools that 
support, the use of executable architectural design Ian- 
guages (EADLa). The toolset suppQrts analysis of time- 
sensitive  systems from the early  construction phaee 
(e.g., architecture  definition) to analysis of correctness 
and performance. In our work, the motivation for choos- 
ing a particular  technique was based on a desire to even- 
tually  transfer the technology to the  project engineers. 
In addition, we were interested in interoperability with 
other tools. As such, we found that  the Acme ADL and 
associated AcmeStudio tool  presented the least m o u n t  
of cducationd overhead. Acme also had the advantage 
of being  able to  embed  other ADLs in ita apecificatiorl. 
However, we recognize that several dternativcs such as 
Rapide  exist  and  are  investigating the possibility of per- 
forming similar ~ ~ ~ Y S C S  prith those tools. 

6 Conclusion 
The work described  here identifies and  demonstrates a 
process for analysis of an existing product-line archi- 
tecture.  The  results of the  architectural recovery and 
discovery Bre captured in an ADL model to support 
subsequent inquiries. The architecture is manually arm 
lyzed against a set of representative  scenarios that cap- 
ture the required  quality attributes.  Further analysis of 
critica,l behaviors at the architectural level ugng auto- 
mated tool6 and model checking to  evaluate the conse- 
quences of architectural decisions for the  product line. 
The application of this combined approach to the inter- 
ferometer’e product line architecture  resulted in some 
meaeuremcnts o f  both the flexibility and limits of its 
architectural  style that could assist the project. 

Further work is  planned in several area,s. In previous 
work we have used formal  techniques for reverse en- 
gineering of code [?]. Wc plCm to investigate how re- 
verse engineering can also be used to assist in the r e  
covery of product linc assets.  This  may involve consid- 
eration of different. analysis frameworks (e.g., Rapide) 
that offer fully integrated  environments and investiga- 
tion of Wright/Spin  translations. We also plan to pur- 
sue the relationship between prodnct-line commonali- 
tiea/variabilitiea and analysis techniques. The observar 
tion  hcrs that quality  attributes  relating to variabili- 
ties  (e.g., modifiability) seem best  supported by mannal 
analysis techniques whereas  commonality attributes  are 
best  analysed with automated tool support (e.g., modcl 
checking) merita further study. Finally, we would lilw 
to makc more precise the role of architectural issues in 
product line decision modela. 
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